Copied to
clipboard

?

G = C10×C22⋊Q8order 320 = 26·5

Direct product of C10 and C22⋊Q8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×C22⋊Q8, C233(C5×Q8), C4.63(D4×C10), C221(Q8×C10), (C22×C10)⋊6Q8, C20.470(C2×D4), (C2×C20).524D4, (C22×Q8)⋊3C10, C24.31(C2×C10), (C23×C20).25C2, (C23×C4).10C10, (Q8×C10)⋊48C22, C22.60(D4×C10), C10.57(C22×Q8), (C2×C10).343C24, (C2×C20).656C23, C10.182(C22×D4), (C23×C10).91C22, C23.70(C22×C10), C22.17(C23×C10), (C22×C20).444C22, (C22×C10).258C23, C2.6(D4×C2×C10), C2.3(Q8×C2×C10), (C10×C4⋊C4)⋊42C2, (C2×C4⋊C4)⋊15C10, (Q8×C2×C10)⋊15C2, (C2×C10)⋊5(C2×Q8), C4⋊C410(C2×C10), (C2×Q8)⋊8(C2×C10), C2.6(C10×C4○D4), (C5×C4⋊C4)⋊66C22, (C2×C4).135(C5×D4), C10.225(C2×C4○D4), (C2×C10).682(C2×D4), C22.30(C5×C4○D4), (C10×C22⋊C4).31C2, (C2×C22⋊C4).11C10, C22⋊C4.10(C2×C10), (C22×C4).53(C2×C10), (C2×C4).12(C22×C10), (C2×C10).230(C4○D4), (C5×C22⋊C4).144C22, SmallGroup(320,1525)

Series: Derived Chief Lower central Upper central

C1C22 — C10×C22⋊Q8
C1C2C22C2×C10C2×C20Q8×C10C5×C22⋊Q8 — C10×C22⋊Q8
C1C22 — C10×C22⋊Q8
C1C22×C10 — C10×C22⋊Q8

Subgroups: 450 in 322 conjugacy classes, 194 normal (26 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×4], C4 [×10], C22, C22 [×10], C22 [×12], C5, C2×C4 [×16], C2×C4 [×18], Q8 [×8], C23, C23 [×6], C23 [×4], C10 [×3], C10 [×4], C10 [×4], C22⋊C4 [×8], C4⋊C4 [×12], C22×C4 [×2], C22×C4 [×8], C22×C4 [×4], C2×Q8 [×4], C2×Q8 [×4], C24, C20 [×4], C20 [×10], C2×C10, C2×C10 [×10], C2×C10 [×12], C2×C22⋊C4 [×2], C2×C4⋊C4, C2×C4⋊C4 [×2], C22⋊Q8 [×8], C23×C4, C22×Q8, C2×C20 [×16], C2×C20 [×18], C5×Q8 [×8], C22×C10, C22×C10 [×6], C22×C10 [×4], C2×C22⋊Q8, C5×C22⋊C4 [×8], C5×C4⋊C4 [×12], C22×C20 [×2], C22×C20 [×8], C22×C20 [×4], Q8×C10 [×4], Q8×C10 [×4], C23×C10, C10×C22⋊C4 [×2], C10×C4⋊C4, C10×C4⋊C4 [×2], C5×C22⋊Q8 [×8], C23×C20, Q8×C2×C10, C10×C22⋊Q8

Quotients:
C1, C2 [×15], C22 [×35], C5, D4 [×4], Q8 [×4], C23 [×15], C10 [×15], C2×D4 [×6], C2×Q8 [×6], C4○D4 [×2], C24, C2×C10 [×35], C22⋊Q8 [×4], C22×D4, C22×Q8, C2×C4○D4, C5×D4 [×4], C5×Q8 [×4], C22×C10 [×15], C2×C22⋊Q8, D4×C10 [×6], Q8×C10 [×6], C5×C4○D4 [×2], C23×C10, C5×C22⋊Q8 [×4], D4×C2×C10, Q8×C2×C10, C10×C4○D4, C10×C22⋊Q8

Generators and relations
 G = < a,b,c,d,e | a10=b2=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 21)(20 22)(31 160)(32 151)(33 152)(34 153)(35 154)(36 155)(37 156)(38 157)(39 158)(40 159)(111 125)(112 126)(113 127)(114 128)(115 129)(116 130)(117 121)(118 122)(119 123)(120 124)(131 143)(132 144)(133 145)(134 146)(135 147)(136 148)(137 149)(138 150)(139 141)(140 142)
(1 48)(2 49)(3 50)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 21)(20 22)(31 160)(32 151)(33 152)(34 153)(35 154)(36 155)(37 156)(38 157)(39 158)(40 159)(51 63)(52 64)(53 65)(54 66)(55 67)(56 68)(57 69)(58 70)(59 61)(60 62)(71 85)(72 86)(73 87)(74 88)(75 89)(76 90)(77 81)(78 82)(79 83)(80 84)(91 103)(92 104)(93 105)(94 106)(95 107)(96 108)(97 109)(98 110)(99 101)(100 102)(111 125)(112 126)(113 127)(114 128)(115 129)(116 130)(117 121)(118 122)(119 123)(120 124)(131 143)(132 144)(133 145)(134 146)(135 147)(136 148)(137 149)(138 150)(139 141)(140 142)
(1 79 67 100)(2 80 68 91)(3 71 69 92)(4 72 70 93)(5 73 61 94)(6 74 62 95)(7 75 63 96)(8 76 64 97)(9 77 65 98)(10 78 66 99)(11 148 160 129)(12 149 151 130)(13 150 152 121)(14 141 153 122)(15 142 154 123)(16 143 155 124)(17 144 156 125)(18 145 157 126)(19 146 158 127)(20 147 159 128)(21 134 39 113)(22 135 40 114)(23 136 31 115)(24 137 32 116)(25 138 33 117)(26 139 34 118)(27 140 35 119)(28 131 36 120)(29 132 37 111)(30 133 38 112)(41 86 58 105)(42 87 59 106)(43 88 60 107)(44 89 51 108)(45 90 52 109)(46 81 53 110)(47 82 54 101)(48 83 55 102)(49 84 56 103)(50 85 57 104)
(1 119 67 140)(2 120 68 131)(3 111 69 132)(4 112 70 133)(5 113 61 134)(6 114 62 135)(7 115 63 136)(8 116 64 137)(9 117 65 138)(10 118 66 139)(11 89 160 108)(12 90 151 109)(13 81 152 110)(14 82 153 101)(15 83 154 102)(16 84 155 103)(17 85 156 104)(18 86 157 105)(19 87 158 106)(20 88 159 107)(21 73 39 94)(22 74 40 95)(23 75 31 96)(24 76 32 97)(25 77 33 98)(26 78 34 99)(27 79 35 100)(28 80 36 91)(29 71 37 92)(30 72 38 93)(41 126 58 145)(42 127 59 146)(43 128 60 147)(44 129 51 148)(45 130 52 149)(46 121 53 150)(47 122 54 141)(48 123 55 142)(49 124 56 143)(50 125 57 144)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,21)(20,22)(31,160)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,157)(39,158)(40,159)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,121)(118,122)(119,123)(120,124)(131,143)(132,144)(133,145)(134,146)(135,147)(136,148)(137,149)(138,150)(139,141)(140,142), (1,48)(2,49)(3,50)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,21)(20,22)(31,160)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,157)(39,158)(40,159)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,61)(60,62)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,101)(100,102)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,121)(118,122)(119,123)(120,124)(131,143)(132,144)(133,145)(134,146)(135,147)(136,148)(137,149)(138,150)(139,141)(140,142), (1,79,67,100)(2,80,68,91)(3,71,69,92)(4,72,70,93)(5,73,61,94)(6,74,62,95)(7,75,63,96)(8,76,64,97)(9,77,65,98)(10,78,66,99)(11,148,160,129)(12,149,151,130)(13,150,152,121)(14,141,153,122)(15,142,154,123)(16,143,155,124)(17,144,156,125)(18,145,157,126)(19,146,158,127)(20,147,159,128)(21,134,39,113)(22,135,40,114)(23,136,31,115)(24,137,32,116)(25,138,33,117)(26,139,34,118)(27,140,35,119)(28,131,36,120)(29,132,37,111)(30,133,38,112)(41,86,58,105)(42,87,59,106)(43,88,60,107)(44,89,51,108)(45,90,52,109)(46,81,53,110)(47,82,54,101)(48,83,55,102)(49,84,56,103)(50,85,57,104), (1,119,67,140)(2,120,68,131)(3,111,69,132)(4,112,70,133)(5,113,61,134)(6,114,62,135)(7,115,63,136)(8,116,64,137)(9,117,65,138)(10,118,66,139)(11,89,160,108)(12,90,151,109)(13,81,152,110)(14,82,153,101)(15,83,154,102)(16,84,155,103)(17,85,156,104)(18,86,157,105)(19,87,158,106)(20,88,159,107)(21,73,39,94)(22,74,40,95)(23,75,31,96)(24,76,32,97)(25,77,33,98)(26,78,34,99)(27,79,35,100)(28,80,36,91)(29,71,37,92)(30,72,38,93)(41,126,58,145)(42,127,59,146)(43,128,60,147)(44,129,51,148)(45,130,52,149)(46,121,53,150)(47,122,54,141)(48,123,55,142)(49,124,56,143)(50,125,57,144)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,21)(20,22)(31,160)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,157)(39,158)(40,159)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,121)(118,122)(119,123)(120,124)(131,143)(132,144)(133,145)(134,146)(135,147)(136,148)(137,149)(138,150)(139,141)(140,142), (1,48)(2,49)(3,50)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,21)(20,22)(31,160)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,157)(39,158)(40,159)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,61)(60,62)(71,85)(72,86)(73,87)(74,88)(75,89)(76,90)(77,81)(78,82)(79,83)(80,84)(91,103)(92,104)(93,105)(94,106)(95,107)(96,108)(97,109)(98,110)(99,101)(100,102)(111,125)(112,126)(113,127)(114,128)(115,129)(116,130)(117,121)(118,122)(119,123)(120,124)(131,143)(132,144)(133,145)(134,146)(135,147)(136,148)(137,149)(138,150)(139,141)(140,142), (1,79,67,100)(2,80,68,91)(3,71,69,92)(4,72,70,93)(5,73,61,94)(6,74,62,95)(7,75,63,96)(8,76,64,97)(9,77,65,98)(10,78,66,99)(11,148,160,129)(12,149,151,130)(13,150,152,121)(14,141,153,122)(15,142,154,123)(16,143,155,124)(17,144,156,125)(18,145,157,126)(19,146,158,127)(20,147,159,128)(21,134,39,113)(22,135,40,114)(23,136,31,115)(24,137,32,116)(25,138,33,117)(26,139,34,118)(27,140,35,119)(28,131,36,120)(29,132,37,111)(30,133,38,112)(41,86,58,105)(42,87,59,106)(43,88,60,107)(44,89,51,108)(45,90,52,109)(46,81,53,110)(47,82,54,101)(48,83,55,102)(49,84,56,103)(50,85,57,104), (1,119,67,140)(2,120,68,131)(3,111,69,132)(4,112,70,133)(5,113,61,134)(6,114,62,135)(7,115,63,136)(8,116,64,137)(9,117,65,138)(10,118,66,139)(11,89,160,108)(12,90,151,109)(13,81,152,110)(14,82,153,101)(15,83,154,102)(16,84,155,103)(17,85,156,104)(18,86,157,105)(19,87,158,106)(20,88,159,107)(21,73,39,94)(22,74,40,95)(23,75,31,96)(24,76,32,97)(25,77,33,98)(26,78,34,99)(27,79,35,100)(28,80,36,91)(29,71,37,92)(30,72,38,93)(41,126,58,145)(42,127,59,146)(43,128,60,147)(44,129,51,148)(45,130,52,149)(46,121,53,150)(47,122,54,141)(48,123,55,142)(49,124,56,143)(50,125,57,144) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,21),(20,22),(31,160),(32,151),(33,152),(34,153),(35,154),(36,155),(37,156),(38,157),(39,158),(40,159),(111,125),(112,126),(113,127),(114,128),(115,129),(116,130),(117,121),(118,122),(119,123),(120,124),(131,143),(132,144),(133,145),(134,146),(135,147),(136,148),(137,149),(138,150),(139,141),(140,142)], [(1,48),(2,49),(3,50),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,21),(20,22),(31,160),(32,151),(33,152),(34,153),(35,154),(36,155),(37,156),(38,157),(39,158),(40,159),(51,63),(52,64),(53,65),(54,66),(55,67),(56,68),(57,69),(58,70),(59,61),(60,62),(71,85),(72,86),(73,87),(74,88),(75,89),(76,90),(77,81),(78,82),(79,83),(80,84),(91,103),(92,104),(93,105),(94,106),(95,107),(96,108),(97,109),(98,110),(99,101),(100,102),(111,125),(112,126),(113,127),(114,128),(115,129),(116,130),(117,121),(118,122),(119,123),(120,124),(131,143),(132,144),(133,145),(134,146),(135,147),(136,148),(137,149),(138,150),(139,141),(140,142)], [(1,79,67,100),(2,80,68,91),(3,71,69,92),(4,72,70,93),(5,73,61,94),(6,74,62,95),(7,75,63,96),(8,76,64,97),(9,77,65,98),(10,78,66,99),(11,148,160,129),(12,149,151,130),(13,150,152,121),(14,141,153,122),(15,142,154,123),(16,143,155,124),(17,144,156,125),(18,145,157,126),(19,146,158,127),(20,147,159,128),(21,134,39,113),(22,135,40,114),(23,136,31,115),(24,137,32,116),(25,138,33,117),(26,139,34,118),(27,140,35,119),(28,131,36,120),(29,132,37,111),(30,133,38,112),(41,86,58,105),(42,87,59,106),(43,88,60,107),(44,89,51,108),(45,90,52,109),(46,81,53,110),(47,82,54,101),(48,83,55,102),(49,84,56,103),(50,85,57,104)], [(1,119,67,140),(2,120,68,131),(3,111,69,132),(4,112,70,133),(5,113,61,134),(6,114,62,135),(7,115,63,136),(8,116,64,137),(9,117,65,138),(10,118,66,139),(11,89,160,108),(12,90,151,109),(13,81,152,110),(14,82,153,101),(15,83,154,102),(16,84,155,103),(17,85,156,104),(18,86,157,105),(19,87,158,106),(20,88,159,107),(21,73,39,94),(22,74,40,95),(23,75,31,96),(24,76,32,97),(25,77,33,98),(26,78,34,99),(27,79,35,100),(28,80,36,91),(29,71,37,92),(30,72,38,93),(41,126,58,145),(42,127,59,146),(43,128,60,147),(44,129,51,148),(45,130,52,149),(46,121,53,150),(47,122,54,141),(48,123,55,142),(49,124,56,143),(50,125,57,144)])

Matrix representation G ⊆ GL5(𝔽41)

400000
018000
001800
000250
000025
,
400000
01000
004000
00010
00001
,
10000
040000
004000
00010
00001
,
10000
01000
00100
0004039
00011
,
10000
004000
040000
0003414
000147

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,18,0,0,0,0,0,18,0,0,0,0,0,25,0,0,0,0,0,25],[40,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,1,0,0,0,39,1],[1,0,0,0,0,0,0,40,0,0,0,40,0,0,0,0,0,0,34,14,0,0,0,14,7] >;

140 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4P5A5B5C5D10A···10AB10AC···10AR20A···20AF20AG···20BL
order12···222224···44···4555510···1010···1020···2020···20
size11···122222···24···411111···12···22···24···4

140 irreducible representations

dim111111111111222222
type+++++++-
imageC1C2C2C2C2C2C5C10C10C10C10C10D4Q8C4○D4C5×D4C5×Q8C5×C4○D4
kernelC10×C22⋊Q8C10×C22⋊C4C10×C4⋊C4C5×C22⋊Q8C23×C20Q8×C2×C10C2×C22⋊Q8C2×C22⋊C4C2×C4⋊C4C22⋊Q8C23×C4C22×Q8C2×C20C22×C10C2×C10C2×C4C23C22
# reps12381148123244444161616

In GAP, Magma, Sage, TeX

C_{10}\times C_2^2\rtimes Q_8
% in TeX

G:=Group("C10xC2^2:Q8");
// GroupNames label

G:=SmallGroup(320,1525);
// by ID

G=gap.SmallGroup(320,1525);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,560,1149,568,3446]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^2=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽